
‘It’s on the tip of my tongue’: A new Dataset for Known-Item
Retrieval

Samarth Bhargav
s.bhargav@uva.nl

IRLab, University of Amsterdam
The Netherlands

Georgios Sidiropoulos
g.sidiropoulos@uva.nl

IRLab, University of Amsterdam
The Netherlands

Evangelos Kanoulas
e.kanoulas@uva.nl

IRLab, University of Amsterdam
The Netherlands

ABSTRACT
The tip of the tongue known-item retrieval (TOT-KIR) task involves
the ‘one-off’ retrieval of an item for which a user cannot recall a pre-
cise identifier. The emergence of several online communities where
users pose known-item queries to other users indicates the inability
of existing search systems to answer such queries. Research in this
domain is hampered by the lack of large, open or realistic datasets.
Prior datasets relied on either annotation by crowd workers, which
can be expensive and time-consuming, or generating synthetic
queries, which can be unrealistic. Additionally, small datasets make
the application of modern (neural) retrieval methods unviable, since
they require a large number of data-points. In this paper, we collect
the largest dataset yet with 15K query-item pairs in two domains,
namely, Movies and Books, from an online community using heuris-
tics, rendering expensive annotation unnecessary while ensuring
that queries are realistic. We show that our data collection method
is accurate by conducting a data study. We further demonstrate that
methods like BM25 fall short of answering such queries, corrobo-
rating prior research. The size of the dataset makes neural methods
feasible, which we show outperforms lexical baselines, indicating
that neural/dense retrieval is superior for the TOT-KIR task.

CCS CONCEPTS
• Information systems → Document filtering; Web searching
and information discovery; Document representation; Retrieval mod-
els and ranking; Test collections.

KEYWORDS
Known Item Retrieval; Tip of the tongue known item retrieval;

ACM Reference Format:
Samarth Bhargav, Georgios Sidiropoulos, and Evangelos Kanoulas. 2022.
‘It’s on the tip of my tongue’: A new Dataset for Known-Item Retrieval. In
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3488560.3498421

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00
https://doi.org/10.1145/3488560.3498421

1 INTRODUCTION
The tip of the tongue known-item retrieval (TOT-KIR) task involves
a user searching for an itemwhich they had previously encountered,
for which they are unable to recall the precise identifier [2]; for
instance, they are unable to recall the name of a movie viewed
several years ago, characterized by the phrase ‘it lies on the tip of
my tongue’. More precisely, the task involves the retrieval of a single
item from a potentially large collection of items, given a descriptive
query with possibly imprecise information about the item, along
with other information such as the circumstances of encountering
the item, the sentiment/emotion associated with it, the medium it
was encountered in, etc [2, 7–9]. While this is similar to Known-
Item Retrieval (KIR) or item re-finding, we note that TOT-KIR is
distinct from KIR: in TOT-KIR the identifier is unknown, the item
is searched after a much longer period of time after encountering
it, the requests contain imprecise/incorrect information i.e false
memories [7–9] and the queries are verbose [2].

This task is particularly hard for existing search systems, which
is evidenced by the emergence and subsequent popularity of several
online communities1 that allow users to pose TOT-KIR queries. The
challenging nature of this task is further evidenced by references to
previous search attempts in these posts [2], highlighting the need
for datasets and methods to tackle this problem.

This difficulty may stem from the nature of the query itself. For
instance, most queries are verbose compared to typical searches,
and may contain imprecise or incorrect descriptions from a user’s
(typically) faint recollection of the item. Indeed, the incidence of
false memories has been previously studied for KIR [2, 7–9]. Fur-
thermore, the query may contain terms that might not be useful or
even harmful for retrieval performance, such as previous search
attempts, the context or medium it was encountered in, or hedging
words like ‘probably’, ‘maybe’, etc [2]. In some cases, users men-
tion other items to inform other users that the known-item are
not among them. In addition, the text may contain indirect refer-
ences (‘actor that looks like Tom Cruise‘) which are not resolvable
using methods like BM25, requiring more advanced methods [2].
Research in TOT-KIR is impeded by the lack of large scale or open
collections [8, 9].

We make two contributions in this paper. First, we describe a
process to extract known-item queries and their corresponding
‘gold’ items using a heuristic, from the Tip of my Tongue sub-reddit
(https://www.reddit.com/r/tipofmytongue/), a sub-community in
the social media website Reddit. We collect this dataset with a
focus on precision i.e gather only queries for which we can get the
‘gold’ known-item with a high confidence, instead of gathering as

1Other sub-reddits like https://www.reddit.com/r/whatsthatbook/, or online commu-
nities such as https://irememberthismovie.com/ [2]

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

48

https://orcid.org/0000-0001-5204-8514
https://orcid.org/0000-0002-6486-089X
https://orcid.org/0000-0002-8312-0694
https://doi.org/10.1145/3488560.3498421
https://doi.org/10.1145/3488560.3498421
https://www.reddit.com/r/tipofmytongue/
https://www.reddit.com/r/whatsthatbook/
https://irememberthismovie.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488560.3498421&domain=pdf&date_stamp=2022-02-15

Figure 1: A popular post in the subreddit, containing a title
(top, bold text), a flair (in green) and a description (bottom).
A subset of accompanying comments are shown in Figure 2.
The full post can be viewed here.

many data points as possible. We collect 15K data points from two
domains, namely Books andMovies , and show that the heuristic we
propose is accurate using data quality checks. This dataset, which
we term Reddit-TOMT , is the largest collection of known-item
queries yet. Alternatives to the process outlined in this paper are
(a) annotation by crowd workers [2] or experts [7] or (b) simulated
queries [3, 6, 13]. However, the former is expensive and/or time-
consuming, while the latter might not account for characteristic
properties such as false memories[7–9]. Our heuristic allows for
a cost-effective, quick, extensible method to build collections for
TOT-KIR.

Second, we benchmark this dataset with both sparse/lexical base-
lines and a neural/dense method [12, 25], with the goal of inves-
tigating if TOT-KIR requests can be addressed by methods robust
to low lexical overlap. We show that dense methods outperform
lexical methods by a large margin on Reddit-TOMT . We have re-
leased our code, data and benchmarks, which can be accessed at
https://github.com/samarthbhargav/tomt-data.

2 RELATEDWORK
In the following section, we revisit early work in Known-Item
Retrieval (KIR) from Library Information Sciences, followed by
recent work. We end the section with other datasets and methods
for Known Document/Item search.

Known-Item Retrieval, also termed Known-Item Search, has a
long history in Library and Information Sciences. Buckland [4]
critique the distinction between ‘known item searches’ and ‘subject
searches’. Lee et al. [16] further discuss the complexity of defining
the task in this context. They also note challenges with the task:
The type of relationship with the item, whether it is direct (first-
hand experience) or not (second-hand); the existence of the item,
and if the belief that the item exists is justified; and finally, issues
with the accuracy of the request. In this regard we assume (a) that
item requested exists, and that the user has encountered this item
before; (b) the information contained in the query may or may not
be accurate, and may contain extraneous information irrelevant to
the task.

KIR or (item) ‘re-finding’ is defined as repeated searching for a
document that was previously found or accessed [21]. These queries
have been found to constitute up to 40% of all queries, with about a
third being identical[22]. Re-finding/KIR in general is distinct from

TOT requests. KIR queries are much shorter[22], and comparatively
less time passes before a repeat query[5].

Data in this domain is typically not public, motivating approaches
for simulating known-item queries. Azzopardi et al. [3] generate
synthetic data by first selecting a document and then generating a
query corresponding to it. Query terms are sampled from a proba-
bility distribution over document terms, prioritizing discriminative
terms, with noise added to mimic false memories. This general
approach has been adopted for specific domains such as personal
information management [6] and emails [13]. Kim and Croft [14]
study type-specific metadata for known item search on desktops
using a test collection collected using a human-computer game on
a pseudo-desktop. Participants were shown items and tasked to
generate queries which rank the correct item higher; however this
study does not model false memories, a key characteristic of TOT-
KIR. Other datasets for re-finding or KIR are: Homepage finding
(TREC 10), Named-page finding (TREC 11), and the Known-Email
search (TREC 2005, Enterprise). Hauff et al. [8], Hauff and Houben
[9] note that false memories and other inaccuracies need to be mod-
eled for realistic queries, and corpora need to be public, contain
queries generated organically i.e without automatically generated
queries from a predetermined known-item. Reddit-TOMT not only
contains real queries, but can be periodically updated or easily
extended to other domains.

Hagen et al. [7] curate a corpus of 2,755 known-item questions,
each mapped to a web page in the ClueWeb09 collection, from the
Yahoo! answers community. 240 of these questions were annotated
with false memories and corresponding correct information. These
collections focus on KIR queries, we now describe work that focus
on ‘Tip of the Tongue‘ (TOT) requests. The phenomena of false
memories, the lengthy duration between encountering and query-
ing for an item, as well as increased verbosity are characteristic of
TOT queries, compared to the KIR task. In addition, TOT queries in-
volve imprecision and unreliable information, is typically ‘one-off’,
and emphasizes identification over navigation [2]. Arguello et al.
[2] study the problem using the irememberthismovie.com website,
scraping 1000 movies and having crowd workers label the correct
answer from replies, in addition to sentence level annotation of
the queries. We corroborate their observation that BM25 methods
maybe insufficient for this task, providing additional evidence that
advanced methods/ representations might be needed to solve this
task. In contrast to Arguello et al. [2], we use heuristics instead of
crowd workers, consider multiple domains, and gather a larger pool
of candidate items, making the task more realistic. Jørgensen and
Bogers [11] conduct a similar study on 250 posts from the ‘Tip of my
Joystick’ community, a sub-community similar to the one explored
in this paper. Reddit-TOMT is by far the largest dataset available
for this task, while requiring no crowd-sourcing or hand-labeling.

3 DATA COLLECTION METHODOLOGY
The data collection process outlined in this section produces around
15K query/known-item pairs, using data spanning 2017-2020, col-
lected from the /r/TipOfMyTongue Reddit community. The first
step, which is to collect, filter and categorize user requests, is out-
lined in Section 3.1. Next, the process to extract gold known-items,

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

49

https://www.reddit.com/r/tipofmytongue/comments/e1s0hi/tomt_movies_2000s_need_help_identifying_a/
https://github.com/samarthbhargav/tomt-data
irememberthismovie.com

(a) The comment tree containing the gold answer, to which the
original poster replies with ‘Solved’

(b) Another comment tree, containing an answer rejected by the
user

Figure 2: Two comment trees, one containing the gold answer, and one containing a suggestion rejected by the user - which
consider as a ‘negative’

along with other items, is described in Section 3.2. Since this pro-
cess is automatic, we perform a quality check to verify the efficacy
of our heuristic, which is described in Section 3.3. The following
paragraph introduces the community and describes the structure
of a typical request, called a submission.

The /r/TipOfMyTongue community is a sub-community where
users post TOT requests (referred to as a submission or post) which
are then answered by other users in the community, sometimes
in a collaborative manner. The user who makes the submission,
called the ‘Original Poster’, provides a title and a description. An
example post is shown in Figure 1, which has a flair assigned to
it by the moderators. Suggestions by other users form a comment
forest, where the roots of the trees correspond to top-level replies.
Two such trees are shown in Figure 2. We use all of these fields to
filter and then extract query and known-item pairs.

3.1 Filtering
We first filtered submissions based on the flair text. By default, a
request is marked ‘Open’, and if the search is successful, this is
changed to ‘Solved’. Some posts (prior to 2019) did not conform to
this, are otherwise empty (no flair), or the post is deleted (if a user
deletes a submission, the content is removed, but the submission
can remain). These were labeled ‘Other’, ‘Unknown’ and ‘Removed’
respectively. We gathered submissions made in the 2017-2020 pe-
riod, using the Pushshift API2 (to extract submission ids/URLs), and
the Python Reddit API Wrapper 3 to gather a total of 843,493 sub-
missions. After skipping posts marked ‘Over 18’, a total of 793,226
submissions were obtained, of which 291,741 were marked Solved
and 143,974 Open. We used only Solved threads in the following
steps. A breakdown of submissions categorized by its status is
shown in Figure 3a. The data suggest that only about half of the
requests were solved in 2020, if Removed posts were not consid-
ered. This may be because of incomplete or inaccurate information,

2https://pushshift.io/api-parameters/
3https://praw.readthedocs.io/en/latest/

which may be exacerbated by false memories, a feature common in
such requests [2, 7]. The titles were then used to categorize posts.

Several titles conformed to a pattern, despite being free-text:
they begin with ‘[TOMT]’, followed by a description of the category
in square braces i.e ‘[TOMT][Category]‘. For instance, ‘[TOMT]
[Movie] [80/90s]’ indicates the user is looking for a Movie that
might have been made in 1980s or 1990s. We extracted the text in
the second set of braces ([Category]), and grouped them into two
categories corresponding to Books and Movies . This grouping was
done by one author and independently verified by another author
to ensure quality. 69 such categories including Television series,
were grouped into a ‘Movies ’ category, while 22 were grouped into
‘Books ’, with 68,724 and 15,613 submissions respectively. Requests
for movies were most frequent in the community, while Books form
a much smaller fraction, as shown in Figure 3b. Apart from the flair,
title and description, each submission has a comment forest. We
noted that most posts, especially in Books , had only a single top-
level reply with minimal back-and-forth between users. Crucially,
the rules of the community state that users are asked to reply to
the accepted answer with ‘Solved’. The next section describes a
heuristic to use this to extract ‘gold’ answers.

3.2 Extracting Gold Answers
Since a typical ‘Solved’ post has a canonical comment by the original
poster, we design a heuristic to extract gold answers from solved
posts, outlined in Algorithm 1. Our approach can be summarized
as: (1) traverse the comment trees to find the reply which indicates
that the author has accepted the answer (‘Solved!’) (2) construct a
path from this node to the root of the tree (3) extract URLS from
this path, and link this to corresponding item page (4) extract query-
item pairs by picking requests with a single candidate . The URLs
are examined only if they are from (1) Wikipedia (2) IMDb 4 (for
Movies) (3) GoodReads 5 (for Books) with each such URL considered

4A community website for digital media: https://www.imdb.com/
5A community website for Books https://www.goodreads.com/

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

50

https://pushshift.io/api-parameters/
https://praw.readthedocs.io/en/latest/
https://www.imdb.com/
https://www.goodreads.com/

(a) Submission Status (b) Category

Figure 3: Submission statistics for the subreddit for 2017-2020, with the number of posts steadily increasing. Note that several
posts remain unsolved in 2020. The categorization used to produce (b) is described in Section 3.1

as a candidate for the gold answer6. As this heuristic may extract
multiple candidates, only submissions with a single candidate were
considered, which is justified since our goal is to gather accurate
query-item pairs in an automated manner. We leave the utilization
of submissions with multiple candidates to future work.

Each candidate consists of the following: (1) an identifier uniquely
identifying the known-item (2) a title associated with the item (3) a
description of the item (4) additional meta data (if applicable) . The
following two paragraphs detail the data extracted for each subset,
followed by a discussion of other domains and the extraction of
other items to make the task more realistic.

3.2.1 Movies . The IMDb ID was used as the identifier for Movies ,
since this is referred to most frequently in the comments. If, instead,
a Wikipedia URL was found, the IMDb ID (property P345) was
obtained using the corresponding WikiData ID associated with
the URL. Similarly, if the URL was an IMDb ID, we linked this
movie back to a Wikidata entry, while ensuring that the IMDb ids
from both sources matched. The title and description of the movie
were extracted from Wikipedia (using Wikiplots, similar to [2]), if
available, otherwise from IMDb .

3.2.2 Books . We used the GoodReads ‘Work ID’ as the identifier
for Books , instead of ISBN-10/13 since books can have multiple
editions. If a Wikipedia URL was available instead, we extracted the
ISBN-10/13 using the corresponding Wikidata entity, and linked it
back to GoodReads (and vice versa). We utilized the Book Graph
dataset [23, 24] (extracted in late 2017) for matching ISBNs to work
IDs and for extracting titles and descriptions. Additional informa-
tion such as reviews could also be used towards improving retrieval
performance. While we focus on Books and Movies , it is straight-
forward to extract similar data for other domains.

3.2.3 Other domains. The subreddit has several other categories
not considered in this work. For instance, there were 50,163 solved
submissions corresponding with the (free-text) categories ‘song’

6These websites were selected after a preliminary analysis showed that these were
the most frequent

and ‘music’. Creating a dataset for other domains is straightfor-
ward and involves (1) a method to map a URL to an identifier (and
optionally link this to other sources like Wikipedia) (2) methods to
extract data for a particular item, or to link it to existing data (i.e
get_data in Algorithm 1) .

3.2.4 Other candidates and negatives. In addition to the query-item
pairs described above, we gathered other items that were not se-
lected as ‘gold’ for any query. These were sourced from candidates
which were not selected as gold answers, including those that were
discarded in the filtering step (i.e submissions with > 1 candidates
found in get_answers). These items increase the number of can-
didates in the retrieval pool, making the task more realistic. In
addition to these, we extracted negatives sourced from submissions
where a query-item pair was extracted. An item is considered a
negative for a given query, if it was proposed as an answer but
ended up being rejected by the user. These items are termed nega-
tives since other users confused them with the ‘gold’ item. These
items were not extracted from the comment tree containing the
accepted answer. As there were too few negatives for Books , we
did not include them in the data or experiments. The resulting
dataset statistics are reported in Table 2. Note that some queries
have the same item, which is why the documents are fewer than
the queries. In Reddit-TOMT , the most frequently requested item
is ‘Mindhunters’ (21 times!) in Movies , ‘The Transall Saga’ (8 times)
in Books .

3.3 Data Quality Checks
Three aspects of the data were examined in this study: (1) Heuristic
Accuracy: whether the answer picked by the heuristic matched the
answer picked by the author of the post (2) Data Leakage: whether
the answer itself was in the text 7 (3) Malformed Query: Whether

7Reddit allows a user to edit the original submission. We observed that some descrip-
tions were edited by the original poster to include the answer after the request was
solved, which prompted this aspect of the study. It is an unwritten rule that edits are
appended to the end of the submission.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

51

Algorithm 1: Heuristic for finding the ‘gold’ known item
from a comment forest, given the author of the request
function get_solved_node comment_forest, original_poster

for comment_tree in comment_forest do
reply_stack = [comment_tree] ;
while reply_stack is not empty do

reply = reply_stack.pop();
if reply.author == original_poster then

if reply contains ‘Solved’ then
return comment_tree, reply;

end
end

end
end

end
function get_answers submission

comment_tree, solved_node =
solvedPath(submission.comment_forest,
submission.author);

urls = extract_urls_to_path(comment_tree,
solved_node);

candidates = [] ;
for url in urls do

if url domain is wikipedia or imdb (or goodreads)
then

gold_answer = get_data(url);
candidates.append(gold_answer);

end
end
return candidates;

end

the query was usable e.g if it contained only a URL, it was consid-
ered unusable. This happens if the query pointed to an image, or
a screenshot of a movie . Two of the authors first independently
labeled the data using Label Studio, and then resolved disagree-
ments, on 3 subsets: QAMovies, 100 randomly selected data points
from the Movies ; QAMovies>1, 100 randomly selected data points
from Movies , where the depth of the reply containing the answer
is greater than one; QABooks, 100 randomly selected data points
from the Books subset. As there were too few data points where
the answer positions were greater than one in the Books subset,
we didn’t conduct a study similar to QAMovies>1 for Books . The
results are reported in Table 1 and discussed below.

3.3.1 Heuristic Accuracy. The accuracy for QAMovies>1 (96%) is
slightly lower than that for QAMovies (98%), which indicates that
the heuristic works slightly worse for answers located deeper in
a comment tree. This is likely to happen only in cases where the
original poster rejects an answer containing a URL but accepts a
plain-text answer (no URL) in a deeper reply, which is not picked
up by the heuristic. However, we noted there are relatively few
posts where the answer is located deeper in the comment tree. We
note that the overall accuracy of 97.6% might be under-estimated,

Table 1: Results of the data study outlined in Section 3.3.
Overall accuracy is 97.6%, highlighting the efficacy of the
heuristic outlined in Algorithm 1.

QA Set Question Count

QAMovies
Correct/Incorrect Answer 98 / 2
Well-formed / Malformed Query 98 / 2
Answer in submission / Not in submission 94 / 6

QAMovies>1
Correct/Incorrect Answer 96 / 4
Well-formed / Malformed Query 86 / 14
Answer in submission / Not in submission 99 / 1

QABooks
Correct/Incorrect Answer 99 / 1
Well-formed / Malformed Query 97 / 3
Answer in submission / Not in submission 100 / 0

since most of the answers were found at the root of the comment
tree (99.9% of Books and 98.9% of Movies).

3.3.2 Data Leakage. The data seem to have very few answers in
the query itself. To prevent any data leakage (i.e the name of the
answer is available in the test), we picked only posts with edited
descriptions (see footnote in previous page), and examined these to
check if they had tokens from the title of the known-item in the
last sentence. If such a token occurred, the last sentence is removed
and the description is updated. We note that there were only 5 such
descriptions (0.22%) in Books , and 66 (0.49%) in Movies .

3.3.3 Malformed Query. We removed queries which had either an
empty description, or have a short description with only a URL.
This resulted in 628 (4.45%) and 61 (2.56%) queries being removed
from Movies and Books respectively.

Despite the efficacy of our approach, it is important to note its
limitations, which we outline here. First, users only post requests
to these communities only if their TOT queries fail using existing
search engines, which creates a sampling bias in the types of posts.
However, this is an unavoidable bias inherent in approaches that
source data from communities like Reddit [11], Yahoo Answers
[7] or other community websites [2]. Second, since we filter out
unsolved queries, it contains only queries which can be resolved
i.e Reddit-TOMT cannot reveal why TOT queries fail, which we
believe can be important for a deeper understanding of the task.
In addition, the filtering process considerably reduces the number
of queries e.g using submissions with links may lead to several
queries (without URLs) being missed out. This can happen if the
user uses plain text without linking to these websites, for instance.
While we attempted to capture the latter using entity linking, the
large number of false positives (even after filtering out entities
without IMDb IDs forMovies) made this approach unviable without
annotation, which is contrary to our goal. In addition, since we
didn’t consider replies made by users in subsequent interactions
with other users, some queries themselves might be ‘unsolvable’
without taking these clarifications into account. However, as these
submissions are in the minority, this issue is minimized. Finally, we
note that the sub-reddit contains only English posts.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

52

https://labelstud.io/

Subset No. queries No. positive documents No. other candidates No. negatives Total documents

Books 2319 1910 710 - 2620
Movies 13469 8845 4797 1221 14863
Total 15788 10755 5507 1221 17483

Table 2: Overall statistics of Reddit-TOMT .

4 EXPERIMENTS
This section describes the methods we used as benchmarks. Two
approaches, Lexical/sparse (Section 4.1.1), and Neural/Dense re-
trieval (Section 4.1.2) is described in Section 4.1, followed by the
experimental setup in Section 4.2.

4.1 Benchmarks
We tested the performance of a state-of-the-art dense retriever as
well as traditional lexical-based ones on Reddit-TOMT . We used
BM25 [20] and PL2 [1], two lexical retrieval methods, and Dense
Passage Retrieval [12], a dense retrieval method.

4.1.1 Sparse Retrieval Benchmarks. BM25 [20] is a standard base-
line in IR tasks, and is considered difficult to outperform. PL2, a
divergence from randomness (DFR) model, is the 2-Poisson model
with Laplace after-effect, with normalization [1], which may be
suited for early-precision tasks [10, 19]. For both baselines, we used
the py-Terrier[18] framework’s implementations. The data was pro-
cessed using Terrier’s default processor, which removes stop words
and stems the tokens using the Porter stemmer.

4.1.2 Dense Retrieval Benchmarks. In contrast to traditional meth-
ods which treat each document as a bag of tokens, dense retrieval
conducts retrieval in a dense representation space, by encoding
each document/query into a latent space. By projecting documents
into a latent space, models can account for ‘noise’, for example,
synonymy, allowing for retrieval based on semantics rather than
lexical overlap. We used Dense Retrieval (DR) [12, 25] as a bench-
mark for this purpose. DR is a passage retrieval model where dense
representations are learned from pairs of questions and passages
(or answers) by a dual-encoder model, without any additional pre-
training. Given a question 𝑞, alongside a relevant passage 𝑝+ and a
set of irrelevant passages {𝑝−1 , 𝑝

−
2 , . . . , 𝑝

−
𝑚}, the model learns to rank

relevant passages higher by optimizing the negative log likelihood
(NLL) of the positive passage. In our problem, a relevant passage
is the description of the ‘gold’ known-item, and negative passages
are other items. The following section describes the experimental
setup.

4.2 Experimental Setup
We first split the data into a train (80%), validation (10%) and test set
(10%), by randomly sampling query-item pairs, both for Books and
Movies separately. We index the descriptions of each candidate from
the candidate pool, which consists of both positive and negative
candidates.

For BM25, we tuned the 𝑐 , 𝑘1 and 𝑘3 parameters. We performed
grid search using the following values: 𝑐 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1}, 𝑘1 ∈ {0.3, 0.6, 0.9, 1.2, 1.4, 1.6, 2}, and 𝑘3 ∈{0.5, 2, 4,

6, 8, 10, 12, 14, 20}. For these methods, which do not involve training
a model, we tuned the hyper-parameters on the train-validation
sets, and report the performance on the test set.

We trained DR on the training set for 25 epochs on 2 × 12GB
GPUs. Instead of using a bi-encoder architecture with separately pa-
rameterized query and passage encoders, we share the parameters
for both. In preliminary experiments, we found that this performed
better, perhaps due to the descriptive nature of the queries. We
used a RoBERTa-based[17] encoder, an Adam [15] optimizer with
a learning rate of 2𝑒 − 5, and linear scheduling with a warm-up
ratio of 0.1. We trained using in-batch BM25 negatives, with a batch
size of 4 and one additional negative per question. Finally, the max-
imum passage and query length was limited to 512; truncating
anything beyond this length. Hard negatives for DR were obtained
using BM25 (default parameters). In addition, since we extracted
negatives from the data (as opposed to BM25), we experimented
with using these in place of BM25 negatives in the training process.
In this setting, which we term DR𝐻𝑁 , if a negative from Reddit-
TOMT wasn’t available, BM25 negatives were used instead. We
note that only negatives were available only for 1444 queries in the
training set.

We evaluate the benchmarks on the following metrics, after
truncating the ranking list to 1000:

• Recall@1 (R@1) and Recall@10 (R@10) (referred to as Suc-
cess@1/10 in [2]): Which measures the ability of a method
to return the correct result in the top 1 or 10 list respectively.
This follows Arguello et al. [2].

• Mean Reciprocal Rank (MRR): MRR is the average of the
reciprocal ranks of results. Higher numbers indicate that
known-items were positioned higher in the ranking.

R@K measures whether a user manages to find the item in the
initial ranks, while MRR measures effort, since the user might have
to peruse items further down in the list. We report both the mean
and the standard deviation across all queries for each metric. The
following section reports and discusses the results of these bench-
marks.

5 BENCHMARK RESULTS
The overall results are reported in Table 3. From the results, we
can conclude the following: (1) Lexical methods like BM25 may be
inadequate for known-item search, corroborating prior findings [2]
on a larger dataset dataset (2) DR outperforms all lexical methods,
indicating dense methods may be better suited for TOT-KIR . We
go over these results in the following paragraphs.

We first note that BM25 outperforms PL2 in all settings. We
further note that the performance on R@10 using BM25, 0.3433, is
higher compared to the performance noted in Arguello et al. [2] -
0.1327 another TOT-KIR dataset.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

53

Figure 4: Average recall/success at different cut-offs.

Dataset Method R@1 R@10 MRR

Books
BM25 0.1416 (0.3487) 0.3133 (0.4638) 0.1971 (0.3444)
PL2 0.1330 (0.3396) 0.2918 (0.4546) 0.1873 (0.3363)

DR 0.1974 (0.3981) 0.4206 (0.4937) 0.2783 (0.3835)

Movies
BM25 0.1152 (0.3192) 0.2697 (0.4438) 0.1679 (0.3226)
PL2 0.0973 (0.2964) 0.2221 (0.4157) 0.1423 (0.3009)

DR 0.1285 (0.3347) 0.3180 (0.4657) 0.1938 (0.3343)

Table 3: Results from benchmarks: BM25 outperforms PL2,
while DR outperforms BM25 by a large margin, indicating
that dense methods are more suitable for TOT-KIR

To test if negatives harm performance, we conducted a controlled
experiment, using only queries which have negatives. In the first
run, for each query in the test set with a negative, we created an
index consisting of only ‘positive’ documents. In the second run,
in addition to positive documents, we index (only) negatives corre-
sponding to the current query. Both use the default parameters for
BM25. Comparing the two rankings, we found that negatives were
placed higher than gold known-items for 46.5% queries, with the
mean ranks being 411 for negatives and 1881 for the gold documents.
This indicates lexical methods fail to retrieve the correct known
items, instead ranking negatives higher for some queries. While
we can’t make a broader conclusion due to the limited number of
queries with negatives, it might be that users are driven to these
communities precisely because the wrong movies are retrieved by
existing search engines. This is further evidenced by some users
describing previous search attempts or asserting that the correct
known item is not among certain items [2].

BM25 retrieves the correct known item as the first result for
14.16% of queries in Books . For Movies this number is lower, at
11.52%. The R@10 numbers are about in the 0.26-0.31 range, sug-
gesting that about a third of the queries can be resolved by a user
perusing the top-10 results. Despite this, if we consider the typical
scenario where a user views only the first few results, BM25 falls
short: the majority (i.e approximately 70%) of queries seemingly
cannot be answered using BM25/PL2. We note however, that the
capability of existing search engines to resolve TOT-KIR queries

is unknown, so a broader conclusion about its efficacy on queries
cannot be made (see limitations in Section 3.3).

Initial experiments showed that DR (using a pretrained RoBERTa
[17]) without training on Reddit-TOMT , achieves very poor per-
formance, with a R@1 of 0.0067(0.0815), R@10 of 0.0223(0.1476)
and aMRR of 0.0131(0.0903). This further motivates Reddit-TOMT ,
since deep models typically require a large training set to perform
effectively.

Unsurprisingly, DR outperforms BM25 by a large margin for
Books and a smaller but still large margin for Movies . For Books ,
DR retrieves the correct known-item in the top-10 for almost half
of the queries, and for Movies this is reduced to a third. On average,
the correct known-item is also placed higher in the result list, as
evidenced by higher MRR scores.

DR𝐻𝑁 , which uses negatives from the dataset instead of the
default BM25 negatives, performs slightly worse than DR, but
is still better than lexical methods. DR𝐻𝑁 has a lower R@1 of
0.1248(0.3305) and a lowerMRR of 0.1888(0.3295), but has amarginally
better recall of 0.3210(0.4668) for Movies . While the performance
differences are insignificant, we hypothesize that this might be
due to multiple factors: First, only a fraction of the queries in the
training set have negatives and access to additional negatives might
change the results; second, since negatives are extracted from user
comments, they might be noisy, making distinguishing between
negatives and the correct item trivial, leading to little or no learning;
finally other factors introduced in training deep models (like choice
of model, etc) might also be a factor.

To further investigate the effort required to find items in a list of
results, we compute and plot recall at multiple cut-offs in Figure
4. It is evident that DR outperforms BM25 and PL2, highlighting
the inability of lexical methods to retrieve the correct result. We
conclude that Dense retrieval is more effective at the known-item
retrieval task. The following paragraph describes examples where
either BM25/DR excel or fail.

Qualitative Analysis. Table 4 contains examples from the dataset.
We note that BM25 excels at retrieving items with very discrimi-
native words like ‘geyser’ (1) or ‘atticus’ (2). However, since false
memories are common in KIR [7–9, 11], discriminative terms, e.g
names, may lead to failure. Furthermore, the presence of hedging
terms or otherwise imprecise descriptions aren’t handled directly

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

54

Query Correct
Known-Item BM25 Rank DR Rank Top Result

BM25/DR

1
Old black and white -alien?- movie, where in the end the main alien die by a hot
water geyser. Can’t remember much else, I watched this movie like 30 years

ago or so, asked about it a lot and still nothing.

Lobster Man
from Mars∗ 2 - Journey to the Center of the Earth∗ /

The Best Years of our Lives ∗

2 dystopian fiction book, possibly YA, about a teen with lion
feetThere’s a man named Atticus I think, who had crab hands ... Above∗ 1 - Above∗

/ The Deserter∗

3

Teens (and one kid) are sent to a military style boot camp. The guy in charge
is African American and has a gap tooth. Only scene I vividly remember
is the youngest kid crawling in mud while it’s raining and the movie

ended with the guy in charge smiling at the kids

Major Payne∗ - 1 Camp Nowhere∗ /
Major Payne∗

3 Book where kids travel to an alternate reality with people "taken out of time"?
I vaguely remember a book from my childhood ...

Jake Ransom
and the Skull

King’s Shadow∗
- 1 Amnesia∗ / Jake Ransom and

the Skull King’s Shadow∗

4
Looking for a recent book, dark cover with a pentagram,
eerie font for the title and such, but I don’t remember

the title or the author. Found it on the Barnes and Noble website ..

The Merciless
IV∗ - 9 The Mysteries of Harris Burdick∗

/ I Hope They Serve Beer in Hell∗

5
Childrens book about playing cards I barely remember anything

... (teacher read it to us in 1st grade, 1996) ... days of the
week or something like "Tuesday" seems significant, either part of the title ...

One Monday
Morning∗ - - Huggly Goes To School∗

/ You Are Special∗

Table 4: Qualitative examples from the data, highlighting certain cases where BM25/DR succeed and fail. ‘-’ indicates failure
to retrieve in the top-1000. Clicking on ‘∗’ beside an item leads to its page.

by BM25. DR, however, appears to handle this better i.e (3), or
when there is a low lexical overlap. Surprisingly DR ranks the gold
item high for (4), which describes only the cover of the book. The
last query (5) contains incorrect information (‘Tuesday’ instead of
‘Monday’) and both methods fail to retrieve the correct item. We
present concluding remarks and future research directions in the
next section.

6 CONCLUSION
In this paper, we outlined a novel, automated process to gather a
dataset for known-item retrieval in two domains, Books andMovies ,
using heuristics for finding ‘gold’ known-items, along with nega-
tives that other users may confuse the correct item with. Through
data quality checks, we showed that this heuristic is accurate, ren-
dering automated collection of TOT-KIR datasets feasible. In con-
trast to prior work, this process does not require human labeling,
allowing for large scale datasets in diverse domains. Furthermore,
this process renders synthetic known-item queries unnecessary.
Using this algorithm, we collected 15,788 query/known-item pairs,
the largest dataset to date for the TOT-KIR task. This large scale
dataset allows for training neural models. We have open sourced the
code to enable other researchers to collect additional data, perhaps
in other domains.

Finally, we evaluated multiple benchmarks on this dataset, using
both methods that rely on lexical overlap and methods that create
dense representations for retrieval. We showed that lexical methods
cannot retrieve the correct known item for a majority of the data,
highlighting the difficulty of the task. Furthermore, we showed that
a dense retrieval benchmark outperforms the lexical baselines by
a large margin. We see many directions of potential future work.
The first thread of work involves the data collection process, while
the second is methodological.

While we focused on two domains, gathering data for other do-
mains is straightforward, since only part of the algorithm (e.g the

𝑔𝑒𝑡_𝑑𝑎𝑡𝑎 method) needs to be adapted for the new domain. Apart
from this, the data can be periodically expanded by considering
recent submissions. In addition, while this work focused on only
solved submissions, further research is required to understand why
TOT requests fail. For instance, discriminative information might be
missing in such queries, and identifying this could be useful e.g in
the formulation of clarifying questions. The number of data points
can be increased by using entity linking instead of using URLs, or
by finding the correct known item from the pool of extracted can-
didates. Finally, data for items can be augmented from additional
sources. For instance, we found some users who referred to reviews
in their answers. Review information can be extracted and indexed
as well, augmenting the information available for items - especially
since TOT requests can contain plot information otherwise not con-
tained in a synopsis (‘spoilers’). It has been hypothesized that TOT
queries can benefit from multi-hop reasoning to answer indirect
queries [2]. Such methods can use entity information, which can
be gathered from Wikidata using the Wikidata IDs we extract (for
Movies). In addition, since we also collect all replies made by users,
they can potentially be used to either build conversational agents or
use clarifications in these replies to improve retrieval performance.

ACKNOWLEDGMENTS
The authors would like to thank Wilker Aziz, Antonis Krasakis,
Svitlana Vakulenko, Vera Provatorova and Mohammad Aliannejadi
for their suggestions. The authors also thank the reviewers for
their valuable feedback. This research was supported by the NWO
Innovational Research Incentives Scheme Vidi (016.Vidi.189.039),
the NWO Smart Culture - Big Data / Digital Humanities (314-99-
301), and the H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart,
GreenAnd Integrated Transport (814961). All content represents the
opinion of the authors, which is not necessarily shared or endorsed
by their respective employers and/or sponsors.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

55

https://www.imdb.com/title/tt0097768/
https://www.imdb.com/title/tt0373051/
https://www.imdb.com/title/tt0036868/
https://www.goodreads.com/book/show/11250671-above
https://www.goodreads.com/book/show/11250671-above
https://www.goodreads.com/book/show/9579636-the-deserter
https://www.imdb.com/title/tt0110443/
https://www.imdb.com/title/tt0109369/
https://www.imdb.com/title/tt0110443/
https://www.goodreads.com/book/show/5278010-jake-ransom-and-the-skull-king-s-shadow
https://www.goodreads.com/book/show/481403.Amnesia
https://www.goodreads.com/book/show/5278010-jake-ransom-and-the-skull-king-s-shadow
https://www.goodreads.com/book/show/36536878-the-merciless-iv
https://www.goodreads.com/book/show/55734.The_Mysteries_of_Harris_Burdick
https://www.goodreads.com/book/show/9010.I_Hope_They_Serve_Beer_in_Hell
https://www.goodreads.com/book/show/932956.One_Monday_Morning
https://www.goodreads.com/book/show/1359318.Huggly_Goes_To_School
https://www.goodreads.com/book/show/56728.You_Are_Special

REFERENCES
[1] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic models of

information retrieval based on measuring the divergence from randomness. ACM
Transactions on Information Systems (TOIS) 20, 4 (2002), 357–389.

[2] Jaime Arguello, Adam Ferguson, Emery Fine, Bhaskar Mitra, Hamed Zamani, and
Fernando Diaz. 2021. Tip of the Tongue Known-Item Retrieval: A Case Study in
Movie Identification. In Proceedings of the 2021 Conference on Human Information
Interaction and Retrieval (Canberra ACT, Australia) (CHIIR ’21). Association for
Computing Machinery, New York, NY, USA, 5–14. https://doi.org/10.1145/
3406522.3446021

[3] Leif Azzopardi, Maarten de Rijke, and Krisztian Balog. 2007. Building Simulated
Queries for Known-Item Topics: An Analysis Using Six European Languages. In
Proceedings of the 30th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (Amsterdam, The Netherlands) (SIGIR
’07). Association for Computing Machinery, New York, NY, USA, 455–462. https:
//doi.org/10.1145/1277741.1277820

[4] Michael K Buckland. 1979. On types of search and the allocation of library
resources. Journal of the American Society for Information Science 30, 3 (1979),
143–147.

[5] David Elsweiler, Morgan Harvey, and Martin Hacker. 2011. Understanding Re-
Finding Behavior in Naturalistic Email Interaction Logs. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Beijing, China) (SIGIR ’11). Association for Computing Machinery, New
York, NY, USA, 35–44. https://doi.org/10.1145/2009916.2009925

[6] David Elsweiler, David E. Losada, José C. Toucedo, and Ronald T. Fernandez. 2011.
Seeding Simulated Queries with User-Study Data for Personal Search Evaluation.
In Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Beijing, China) (SIGIR ’11). Association
for Computing Machinery, New York, NY, USA, 25–34. https://doi.org/10.1145/
2009916.2009924

[7] Matthias Hagen, Daniel Wägner, and Benno Stein. 2015. A Corpus of Realistic
Known-Item Topics with Associated Web Pages in the ClueWeb09. In Advances
in Information Retrieval, Allan Hanbury, Gabriella Kazai, Andreas Rauber, and
Norbert Fuhr (Eds.). Springer International Publishing, Cham, 513–525.

[8] Claudia Hauff, Matthias Hagen, Anna Beyer, and Benno Stein. 2012. Towards
Realistic Known-Item Topics for the ClueWeb. In Proceedings of the 4th Infor-
mation Interaction in Context Symposium (Nijmegen, The Netherlands) (IIIX
’12). Association for Computing Machinery, New York, NY, USA, 274–277.
https://doi.org/10.1145/2362724.2362773

[9] Claudia Hauff and Geert-Jan Houben. 2011. Cognitive Processes in Query Gener-
ation. In Advances in Information Retrieval Theory, Giambattista Amati and Fabio
Crestani (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 176–187.

[10] Ben He and Iadh Ounis. 2005. Term Frequency Normalisation Tuning for BM25
and DFR Models. In Advances in Information Retrieval, David E. Losada and
Juan M. Fernández-Luna (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
200–214.

[11] Ida Kathrine Hammeleff Jørgensen and Toine Bogers. 2020. “Kinda like The Sims...
But with Ghosts?”: A Qualitative Analysis of Video Game Re-Finding Requests
on Reddit. Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3402942.3402971

[12] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550

[13] Jinyoung Kim and W. Bruce Croft. 2009. Retrieval Experiments Using Pseudo-
Desktop Collections. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management (Hong Kong, China) (CIKM ’09). Association for
Computing Machinery, New York, NY, USA, 1297–1306. https://doi.org/10.1145/
1645953.1646117

[14] Jinyoung Kim andW. Bruce Croft. 2010. Ranking UsingMultiple Document Types
in Desktop Search. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval (Geneva, Switzerland)
(SIGIR ’10). Association for Computing Machinery, New York, NY, USA, 50–57.
https://doi.org/10.1145/1835449.1835461

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[16] Jin Ha Lee, Allen Renear, and Linda C Smith. 2006. Known-item search: Variations
on a concept. Proceedings of the american society for information science and
technology 43, 1 (2006), 1–17.

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[18] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimenta-
tion in Information Retrieval using PyTerrier. CoRR abs/2007.14271 (2020).
arXiv:2007.14271 https://arxiv.org/abs/2007.14271

[19] Vassilis Plachouras, Ben He, and Iadh Ounis. 2004. University of Glasgow at
TREC 2004: Experiments in Web, Robust, and Terabyte Tracks with Terrier.. In
TREC.

[20] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.
https://doi.org/10.1561/1500000019

[21] Sargol Sadeghi, Roi Blanco, Peter Mika, Mark Sanderson, Falk Scholer, and David
Vallet. 2014. Identifying Re-Finding Difficulty from User Query Logs. In Pro-
ceedings of the 2014 Australasian Document Computing Symposium (Melbourne,
VIC, Australia) (ADCS ’14). Association for Computing Machinery, New York,
NY, USA, 105–108. https://doi.org/10.1145/2682862.2682867

[22] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael A. S. Potts. 2007. Information
Re-Retrieval: Repeat Queries in Yahoo’s Logs. In Proceedings of the 30th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval (Amsterdam, The Netherlands) (SIGIR ’07). Association for Computing Ma-
chinery, New York, NY, USA, 151–158. https://doi.org/10.1145/1277741.1277770

[23] Mengting Wan and Julian McAuley. 2018. Item Recommendation on Monotonic
Behavior Chains. In Proceedings of the 12th ACM Conference on Recommender
Systems (Vancouver, British Columbia, Canada) (RecSys ’18). Association for
Computing Machinery, New York, NY, USA, 86–94. https://doi.org/10.1145/
3240323.3240369

[24] MengtingWan, Rishabh Misra, Ndapa Nakashole, and Julian McAuley. 2019. Fine-
Grained Spoiler Detection from Large-Scale Review Corpora. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Florence, Italy, 2605–2610. https://doi.org/10.
18653/v1/P19-1248

[25] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval. ArXiv
abs/2006.15498 (2020).

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

56

https://doi.org/10.1145/3406522.3446021
https://doi.org/10.1145/3406522.3446021
https://doi.org/10.1145/1277741.1277820
https://doi.org/10.1145/1277741.1277820
https://doi.org/10.1145/2009916.2009925
https://doi.org/10.1145/2009916.2009924
https://doi.org/10.1145/2009916.2009924
https://doi.org/10.1145/2362724.2362773
https://doi.org/10.1145/3402942.3402971
https://doi.org/10.1145/3402942.3402971
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/1645953.1646117
https://doi.org/10.1145/1645953.1646117
https://doi.org/10.1145/1835449.1835461
https://arxiv.org/abs/2007.14271
https://arxiv.org/abs/2007.14271
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/2682862.2682867
https://doi.org/10.1145/1277741.1277770
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.18653/v1/P19-1248
https://doi.org/10.18653/v1/P19-1248

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection Methodology
	3.1 Filtering
	3.2 Extracting Gold Answers
	3.3 Data Quality Checks

	4 Experiments
	4.1 Benchmarks
	4.2 Experimental Setup

	5 Benchmark Results
	6 Conclusion
	Acknowledgments
	References

