https://github.com/ShaliniAnandaPhD/Neuron

This is written to go with the 🧠 Building in Public series https://www.linkedin.com/posts/shalinianandaphd_buildinpublic-neuronframework-modularai-activity-7330766568773025792-6VR8?utm_source=share&utm_medium=member_desktop&rcm=ACoAAATH3cgBLB3ZhNKdiK83PyAA1KPddyaaY2I

Overview: Rethinking AI Architecture

Neuron represents a different approach from monolithic AI systems to a neuroscience-inspired agent orchestration framework. Rather than relying on single models or rigid processing chains, Neuron assembles dynamic networks of specialized cognitive agents, each optimized for specific types of reasoning, memory, and decision-making.

The framework's core insight mirrors biological cognition: complex intelligence emerges not from a single powerful processor, but from the coordinated interaction of specialized neural circuits. Neuron implements this principle through modular agents that can be dynamically composed, monitored, and reconfigured based on real-time performance and context.


Traditional AI Pipeline:
Input β†’ [Single Model] β†’ Output

Neuron Orchestration:
                    β”Œβ”€ Reflex Agent ─┐
Input β†’ Coordinator β”œβ”€ Learning Agent β”œβ†’ SynapticBus β†’ Integrated Output
                    └─ Deliberative β”€β”˜
                           ↑
                    Memory Systems

Agent Architecture: The Building Blocks of Cognition

Core Agent Types

Neuron's agent taxonomy draws from cognitive science and neurobiology, implementing four primary agent categories that mirror different types of neural processing:


Agent Hierarchy:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    NEURON AGENT ECOSYSTEM                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚   REFLEX    β”‚ β”‚DELIBERATIVE β”‚ β”‚  LEARNING   β”‚ β”‚COORDIN- β”‚ β”‚
β”‚ β”‚   AGENTS    β”‚ β”‚   AGENTS    β”‚ β”‚   AGENTS    β”‚ β”‚  ATOR   β”‚ β”‚
β”‚ β”‚             β”‚ β”‚             β”‚ β”‚             β”‚ β”‚ AGENTS  β”‚ β”‚
β”‚ β”‚ β€’ Quick     β”‚ β”‚ β€’ Multi-stepβ”‚ β”‚ β€’ Adaptive  β”‚ β”‚ β€’ Route β”‚ β”‚
β”‚ β”‚   Response  β”‚ β”‚   Reasoning β”‚ β”‚   Behavior  β”‚ β”‚ β€’ Manageβ”‚ β”‚
β”‚ β”‚ β€’ Rule-basedβ”‚ β”‚ β€’ Analysis  β”‚ β”‚ β€’ Historicalβ”‚ β”‚ β€’ Fail- β”‚ β”‚
β”‚ β”‚ β€’ Triggers  β”‚ β”‚ β€’ Planning  β”‚ β”‚   Memory    β”‚ β”‚   over  β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

1. Reflex Agents

Function: Immediate response systems for well-defined scenarios

2. Deliberative Agents

Function: Complex reasoning and multi-step analysis