Paper

Introduction
Making High Quality images using 'Discrete Latent representation

Discrete Latent Variables
- Defining Latent Embedding space e(K*D)
- Decoder Input


Learning
- Send same Gradient from the decoder to the encoder
- Embedding space learning - Vector Quantisation
- Loss

sg: stop gradient
- Encoder - 1,3/ Decoder - 1/ Embedding space - 2
- No KL-divergence Loss
Learn prior-Image Sampling(pixelCNN)
- PixelCNN
- [ ] AutoRegressive Model : 자기 자신을 입력으로 하여 자기 자신을 예측
