1. Introduction

2. Unsupervised Data Augmentation (UDA)

2.1 Background: Supervised Data Augmentation

2.2 Unsupervised Data Augmentation

$$ \text{min}{\theta}\mathcal{J}(\theta)=\mathbb{E}{x,y^\in L}[-\log p_\theta (y^ | x)] + \lambda \mathbb{E}{x\in U} \mathbb{E}{\hat{x}\sim q(\hat{x}|x)}[\mathcal{D}\text{KL}(p{\tilde{\theta}}(y|x) || p_\theta(y|\hat{x}))] $$