Tsun-An Hsieh
University of Illinois Urbana-Champaign
Sebastian Braun
Microsoft Research
Generative models have shown robust performance on speech enhancement and restoration tasks, but most prior approaches operate offline with high latency, making them unsuitable for streaming applications. In this work, we investigate the feasibility of a low-latency, real-time generative speech restoration system based on flow-matching (FM). Our method tackles diverse real-world tasks, including denoising, dereverberation, and generative restoration. The proposed causal architecture without time-downsampling achieves introduces an total latency of only 20 ms, suitable for real-time communication. In addition, we explore a broad set of architectural variations and sampling strategies to ensure effective training and efficient inference. Notably, our flow-matching model maintains high enhancement quality with only 5 number of function evaluations (NFEs) during sampling, achieving similar performance as when using ~20 NFEs under the same conditions. Experimental results indicate that causal FM-based models favor few-step reverse sampling, and smaller backbones degrade with longer reverse trajectories. We further show a side-by-side comparison of FM to typical adversarial-loss-based training for the same model architecture.
Input
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
Non-causal NCSN++
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
Causal NCSN++
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
FM-ConvGLU-UNet (L)
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
FM-ConvGLU-UNet (B)
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
GAN-ConvGLU-UNet
0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav
Input
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
Non-causal NCSN++
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
Causal NCSN++
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
FM-ConvGLU-UNet (L)
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
FM-ConvGLU-UNet (B)
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
GAN-ConvGLU-UNet
1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav
Input
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
Non-causal NCSN++
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
Causal NCSN++
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
FM-ConvGLU-UNet (L)
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
FM-ConvGLU-UNet (B)
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
GAN-ConvGLU-UNet
4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav
Input
5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav
Non-causal NCSN++
5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav
Causal NCSN++
5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav
FM-ConvGLU-UNet (L)
5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav
FM-ConvGLU-UNet (B)
5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav