Tsun-An Hsieh

University of Illinois Urbana-Champaign

Sebastian Braun

Microsoft Research

Abstract

Generative models have shown robust performance on speech enhancement and restoration tasks, but most prior approaches operate offline with high latency, making them unsuitable for streaming applications. In this work, we investigate the feasibility of a low-latency, real-time generative speech restoration system based on flow-matching (FM). Our method tackles diverse real-world tasks, including denoising, dereverberation, and generative restoration. The proposed causal architecture without time-downsampling achieves introduces an total latency of only 20 ms, suitable for real-time communication. In addition, we explore a broad set of architectural variations and sampling strategies to ensure effective training and efficient inference. Notably, our flow-matching model maintains high enhancement quality with only 5 number of function evaluations (NFEs) during sampling, achieving similar performance as when using ~20 NFEs under the same conditions. Experimental results indicate that causal FM-based models favor few-step reverse sampling, and smaller backbones degrade with longer reverse trajectories. We further show a side-by-side comparison of FM to typical adversarial-loss-based training for the same model architecture.

Codec

Input

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

Non-causal NCSN++

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

Causal NCSN++

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

FM-ConvGLU-UNet (L)

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

FM-ConvGLU-UNet (B)

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

GAN-ConvGLU-UNet

0d29171a-e43b-4d3a-bff6-efd5e0876e04.wav

Low-Pass Filter

Input

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

Non-causal NCSN++

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

Causal NCSN++

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

FM-ConvGLU-UNet (L)

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

FM-ConvGLU-UNet (B)

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

GAN-ConvGLU-UNet

1c6a9f67-9da8-484c-b52a-03c2f6d50e70.wav

Noise Suppression + Distortion + Wind

Input

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

Non-causal NCSN++

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

Causal NCSN++

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

FM-ConvGLU-UNet (L)

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

FM-ConvGLU-UNet (B)

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

GAN-ConvGLU-UNet

4d9694d3-9644-49d3-a22e-5f73220e5cd3.wav

Distortion

Input

5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav

Non-causal NCSN++

5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav

Causal NCSN++

5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav

FM-ConvGLU-UNet (L)

5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav

FM-ConvGLU-UNet (B)

5a1bc510-b7fa-4c60-be70-f2a7d943acd0.wav

Unbalanced Frequencies

Noise Suppression + Low-Pass Filter

Noise

Packet Loss

Reverb