🚨 The Threat Landscape
Why This Matters for Symphony
- Community-developed extensions run with significant privileges
- AI extensions have access to APIs, data, and system resources
- Users trust extensions with their code and sensitive information
- Single malicious extension could compromise entire workflows
Attack Vectors Specific to Symphony
🎯 HIGH-RISK SCENARIOS:
1. **Credential Harvesting**
- AI extension requests API keys "for better performance"
- Silently copies keys to remote server
- User doesn't realize until bills/quotas exceeded
2. **Code Exfiltration**
- Extension claims to "optimize" user's code
- Actually sends proprietary code to competitor
- Looks like normal processing activity
3. **Resource Hijacking**
- Extension uses AI API quotas for own purposes
- Mines crypto using user's compute resources
- Depletes user's paid AI service credits
4. **Workflow Sabotage**
- Extension subtly corrupts output files
- Introduces hard-to-detect bugs in generated code
- Damages user productivity over time
5. **Supply Chain Attack**
- Popular extension gets compromised in update
- Thousands of Symphony users affected simultaneously
- Difficult to detect until widespread damage
🛡️ Multi-Layer Security Strategy
Layer 1: Sandboxing & Isolation
Process Isolation
[security.process_isolation]
each_extension_separate_process = true
no_shared_memory = true
limited_system_calls = true
restricted_file_system_access = true
[security.network_isolation]
extension_network_allowlist = ["declared_apis_only"]
block_unexpected_domains = true
monitor_data_egress = true
encrypt_inter_extension_communication = true
Resource Containerization
# Each extension runs in isolated container
Extension Container:
├── CPU: Limited to declared amount
├── Memory: Hard limit, no swap
├── Network: Only approved endpoints
├── File System: Read-only + temp directory
└── API Access: Only declared endpoints
Layer 2: Runtime Behavior Monitoring
Behavioral Analysis Engine
class ExtensionBehaviorMonitor:
def __init__(self):
self.baseline_behavior = {}
self.anomaly_threshold = 0.7
def monitor_extension(self, extension_id):
behavior_metrics = {
"cpu_usage_pattern": self.track_cpu_usage(),
"network_requests": self.track_network_calls(),
"file_operations": self.track_file_access(),
"api_call_patterns": self.track_api_usage(),
"memory_allocation": self.track_memory_patterns(),
"execution_time_variance": self.track_timing()
}
anomaly_score = self.calculate_anomaly_score(behavior_metrics)
if anomaly_score > self.anomaly_threshold:
self.trigger_security_alert(extension_id, behavior_metrics)
Red Flags for Immediate Quarantine
[security.red_flags]
unexpected_network_destinations = "IMMEDIATE_QUARANTINE"
excessive_resource_usage = "WARN_THEN_QUARANTINE"
file_system_escape_attempts = "IMMEDIATE_QUARANTINE"
credential_harvesting_patterns = "IMMEDIATE_QUARANTINE"
cryptocurrency_mining_signatures = "IMMEDIATE_QUARANTINE"
[security.monitoring_metrics]
network_egress_rate = "bytes_per_minute"
cpu_usage_vs_declared = "percentage_over_manifest"
memory_growth_rate = "mb_per_operation"
api_call_frequency = "calls_per_minute"