<aside>

Goal:

Let non-technical users ask sales questions in plain English and get data-backed insights drawn from Supabase (PostgreSQL).

Problem:

Analysts lose time translating natural-language questions into SQL and formatting results. Stakeholders want quick, readable answers (not tables or code).

Solution:

An n8n workflow that converts the user’s question into SQL, executes it on the “Sales Data 2024/2025” tables, and returns a narrative insight with key numbers highlighted.


Step 1: Trigger (Chat UI)

Step 2: Generate SQL from Natural Language

Step 3: Execute SQL

Step 4: Normalize Output

Step 5: Create the Narrative Answer


Tools Used:

Impact:

đź§  Learnings:

</aside>


Screenshot 2025-09-01 212406.png

đź“‚ Download & Explore the Workflow:

Sales Insights Chatbot JSON.json

View GitHub Repository :

Sales-Insights-Chatbot-n8n/Sales Insights Chatbot JSON.json at main · AlvLeoAI/Sales-Insights-Chatbot-n8n