Overview

This project implements a convolutional neural network (CNN) model to classify retinal images into four categories. The model utilizes transfer learning with the pre-trained MobileNetV3Large architecture, fine-tuned on the retinal image dataset. The objective is to achieve high accuracy and F1 score on both training and validation datasets.


Data Preparation

Dataset Loading

Code Sample

python
CopyEdit
train_data = image_dataset_from_directory(
    r"..\\data\\retina\\train",
    labels="inferred",
    label_mode="categorical",
    color_mode="rgb",
    batch_size=32,
    image_size=(224, 224),
    shuffle=True
)

valid_data = image_dataset_from_directory(
    r"..\\data\\retina\\val",
    labels="inferred",
    label_mode="categorical",
    color_mode="rgb",
    batch_size=32,
    image_size=(224, 224),
    shuffle=True
)

Model Architecture

Base Model: MobileNetV3Large