Following are the 3 classes of Quantum Algorithms:
- Based on Quantum versions of Fourier Transform:
- DJ Algos’s Hadamard Transform
- Shor’s algorithm form Factoring & Discrete Logarithms
- Quantum Search Algorithm
- Quantum simulations
Has rich applications in areas of Signal/Information processing from spectroscopy to telecommunication.
A mathematical/integral transform maps a function from its function space into another functions space. We can also map back to the orignal function space via inverse transform.
Fourier Transform: A mathematical transform that decomposes a waveform (function/signal) into an alternate representation characterized by sine & cosine functions of varying frequencies.
Ex: Decomposing the waveform of a musical chord into terms of intensity of contituent pitches.
It is noted that a Fourier Transformed version of a problem is easier to solve than the Orignal version.
The Discrete Fourier Transform acts on a vector $(x_0, \dots, x_{N-1})$ and maps it to the vector $(y_0, \dots, y_{N-1})$ according to the formula:
$\boxed{y_k = \frac{1}{\sqrt{N}}\normalsize\sum_{j=0}^{N-1}x_j\large e^{2\pi i\frac{jk}{N}}}$
Similarly, the quantum Fourier transform acts on a quantum state:
$\ket{X} = \sum_{j=0}^{N-1}x_j\ket{j}$
and maps it to the quantum state:
$\ket{Y} = \sum_{k=0}^{N-1}y_k\ket{k}$
according to the formula:
$\boxed{y_k = \frac{1}{\sqrt{N}}\normalsize\sum_{j=0}^{N-1}x_j\large e^{2\pi i\frac{jk}{N}}}$
or, simply for a basis state $\ket{X}$, the QFT can also be expressed as a map:
$\boxed{QFT : \ket{j} \rarr \frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}\large e^{2\pi i\frac{jk}{N}}\normalsize\ket{k}}$
As, notice from the above expression for $y_k$ each basis state $x_j$ contributes a factor of $\large e^{2\pi i\frac{jk}{N}}$to the state $y_k$.
which, for an $n$ qubit system can be written as:
$\boxed{QFT : \ket{j} \rarr \frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}\large e^{2\pi i\frac{jk}{2^n}}\normalsize\ket{k}}$
Example:
Suppose there are 2 states in $H^{\otimes n}$ : $\ket{\psi}$ & $\ket{\psi’}$, such that:
$\ket{\psi’} = QFT\ket{\psi}$
Then, if (for$N = 2^{n}$):
$\ket{\psi} = x_1\ket{0} + x_2\ket{1} + \dots + x_{N-1}\ket{N-1}$
and,
$\ket{\psi'} = y_1\ket{0} + y_2\ket{1} + \dots + y_{N-1}\ket{N-1}$
$\boxed{QFT: \sum_{j=0}^{n-1}x_j\ket{j} \rarr \sum_{k=0}^{n-1}x_k\ket{k}}$
or, simply
$\boxed{QFT: \ket{\psi} \rarr \ket{\psi'}}$
The Quantum Fourier Transform $F$ on the Hilbert Space $H^{\otimes N}$ wrt to an n-Qubit quantum system is:
$\boxed{F = \frac{1}{\sqrt{2^n}}\sum_{x,y = 0}^{2^n - 1}\large e^{\frac{2\pi i}{2^n}x.y}\ket{x}\bra{y}}$
Here, as one might notice $\ket{x}$ & $\ket{y}$ represent the computation basis of $H^{\otimes n}$.
Recall from the chapter matrices & operators that, the above equation represents an operator of order $2^n$ (or simply a $2^n \times 2^n$ matrix).
Taking $w_n = \large e^{\frac{2\pi i}{2^n}}$, we can write the above operator $F$ as:
$F = \Large \frac{1}{\sqrt{2^n}}\normalsize \left[\begin{matrix}1 & 1 & 1 & \dots & 1 \\ 1 & w_n & w_n^2 & \dots & w_n^{2^{n}-1} \\ 1 & w_n^2 & w_n^4 & \dots & w_n^{2(2^{n}-1)} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & w_n^{2^{n}-1} & w_n^{2(2^{n}-1)} & \dots & w_n^{(2^{n}-1)^{2}} \end{matrix}\right]$
The above matrix is noted to be Unitary.