Equation:
$\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\frac{\eta}{\sqrt{\sum\limits_{i=1}^t\mathbf{g}^{(t)T}\mathbf{g}^{(t)}+\varepsilon}}\mathbf{g}^{(t)}$
$\mathbf{g}^{(t)}=∇_\mathbf{w}L(\mathbf{w}^{(t)})\\$
Parameters:
Properties:
API:
opt = tf.keras.optimizers.Adagrad(learning_rate)
opt.minimize(loss, var_list=[w])
Equation:
$\mathbf{w}^{(t+1)}=\mathbf{w}^{(t)}-\frac{\eta}{\sqrt{G^{(t)}} + \varepsilon}\mathbf{g}^{(t)}$
$\mathbf{g}^{(t)}=\nabla_\mathbf{w}L(\mathbf{w}^{(t)})$