<aside> 🧭

Here will stand all my stuff for the participation to ML Zoomcamp 2025.

You will find My notes, resources, repos, projects, articles

I hope you will find interesting things for you.

You can suggest all what you think that could be useful for others in comments.

</aside>


Official Course resources

<aside> Repository:

https://github.com/DataTalksClub/machine-learning-zoomcamp

</aside>

<aside> Playlist:

Machine Learning Zoomcamp

</aside>


<aside> πŸ“š

1) Introduction to ML

<aside> πŸ“š

  1. Intro to ML
  2. ML vs Rule-based Systems
  3. Supervised ML
  4. CRISP-DM Method
  5. Model Selection process </aside>

<aside> πŸ“š

  1. Environment set up/ Github Codespaces
  2. Intro to Numpy
  3. Linear Algebra Refresher
  4. Intro to Pandas
  5. Summary </aside>

</aside>

Personal work:

<aside> πŸ’‘

Personal notes from chapter 1

</aside>

<aside> πŸ“š

https://github.com/DataScienceMyLove/homeworks-ml-zoomcamp-2025/blob/main/01-intro/homework-1.ipynb

</aside>

Sources:

<aside> πŸ”‘

</aside>

<aside> πŸ“š

2) Regression

<aside> πŸ“š

  1. Car Price prediction project
  2. Data Preparation
  3. Exploratory Data Analysis
  4. Setting Up the validation framework
  5. Linear Regression
  6. Linear Regression: Vector form
  7. Traing Linear Regression: Normal Equation
  8. Baseline Model for Car Price Prediction Project </aside>

<aside> πŸ“š

  1. Root Mean Squared Error
  2. Computing RMSE on Validation Data
  3. Feature Engineering
  4. Categorical Variables
  5. Regularization
  6. Fine-tune the model
  7. Using the model
  8. Summary of the chapter </aside>

</aside>

Personal work:

<aside> πŸ”‘

Personal notes from chapter 2: Car price prediction project

</aside>

<aside> πŸ“š

Homework 2: Key concepts/ideas to keep in mind πŸ§‘β€πŸ­

</aside>

<aside> πŸ“š

https://github.com/DataScienceMyLove/homeworks-ml-zoomcamp-2025/blob/main/02-linear_regression/homework-2.ipynb

</aside>

<aside> πŸ“š

https://github.com/DataScienceMyLove/Car-price-prediction/blob/main/car-price-prediction-project.ipynb

</aside>

Useful Resources for this chapter

<aside> πŸ“š

</aside>


<aside> πŸ“š

</aside>

<aside> πŸ”‘

</aside>