For $f:\R^n \to \R^m$, the Jacobian matrix $J \in \R^{m \times n}$
$$ W \in \R^{C \times D}, \bold x \in \R^D,\bold y \in \R^C \\ \frac{\partial \bold y}{\partial \bold x} \in \R^{C*D}, \left (\frac{\partial \bold y}{\partial \bold x} \right )_{i,j} \overset{def}{=} \frac{\partial y_i}{\partial x_j} \\
\bold y=W \bold x \to \frac{\partial \bold y}{\partial \bold x}=W \\
\bold z^T=\bold x^T W^T \to \frac{\partial \bold z}{\partial \bold x}=W $$
consider examples are row vectors
$$
Y=XW,[N \times M]=[N\times D][D\times M]\\
y_{i,j}=\sum_{k=1}^D x_{i,k} w_{k,j}\\
L \in R, \frac{\partial L}{\partial w_{k,j}} =\sum_{i=1}^n \frac{\partial L}{\partial y_{i,j}} \frac{\partial y_{i,j}}{\partial w_{k,j}} =\sum_{i=1}^n \frac{\partial L}{\partial y_{i,j}}x_{i,k} \\
\frac{\partial L}{\partial W}= X^T\frac{\partial L}{\partial Y}, [D \times M]=[D \times N][N \times M] \\ \frac{\partial L}{\partial X}= \frac{\partial L}{\partial Y}W^T, [N \times D]=[N \times M][M \times D] $$