In-Context Retrieval-Augmented Language Models
https://papers.cool/arxiv/2302.00083
Authors: Ori Ram ; Yoav Levine ; Itay Dalmedigos ; Dor Muhlgay ; Amnon Shashua ; Kevin Leyton-Brown ; Yoav Shoham
Summary: Retrieval-Augmented Language Modeling (RALM) methods, which condition a language model (LM) on relevant documents from a grounding corpus during generation, were shown to significantly improve language modeling performance. In addition, they can mitigate the problem of factually inaccurate text generation and provide natural source attribution mechanism. Existing RALM approaches focus on modifying the LM architecture in order to facilitate the incorporation of external information, significantly complicating deployment. This paper considers a simple alternative, which we dub In-Context RALM: leaving the LM architecture unchanged and prepending grounding documents to the input, without any further training of the LM. We show that In-Context RALM that builds on off-the-shelf general purpose retrievers provides surprisingly large LM gains across model sizes and diverse corpora. We also demonstrate that the document retrieval and ranking mechanism can be specialized to the RALM setting to further boost performance. We conclude that In-Context RALM has considerable potential to increase the prevalence of LM grounding, particularly in settings where a pretrained LM must be used without modification or even via API access.
A: 这篇论文提出了一种名为In-Context Retrieval-Augmented Language Modeling (In-Context RALM)的方法,旨在解决传统语言模型(LM)在生成文本时存在的几个关键问题:
为了解决这些问题,In-Context RALM通过在语言模型生成过程中引入相关文档的检索和条件化,来增强模型的性能。这种方法不需要修改语言模型的架构,也不需要对模型进行额外的训练,从而简化了部署过程,并提高了模型在各种文本生成任务中的准确性和可靠性。
A: 相关研究主要分为两大类:最近邻语言模型(Nearest Neighbor Language Models,简称kNN-LM)和检索与阅读模型(Retrieve and Read Models)。以下是这两类模型的一些关键研究:
这篇论文的工作与上述研究不同,因为它不涉及对语言模型的进一步训练,而是采用了一种简单的文档阅读机制,即在输入前缀之前直接附加选定的文档,这种方法被称为In-Context RALM。此外,论文还专注于如何选择合适的文档以提高语言模型的性能。
A: 论文提出了一种名为In-Context Retrieval-Augmented Language Modeling (In-Context RALM)的框架来解决上述问题。这个框架的核心思想是在不改变语言模型(LM)架构的前提下,通过在输入文本前附加相关文档来增强LM。具体来说,In-Context RALM的解决方案包括以下几个关键步骤: