Conv → DeConv
Learning 3D Representation
Learning with view-dependent mappings(3D Transform)
Random pose transformation - Crucial in disentanglement(타 논문에서 확인)
Rigid body transform(Rotation only - elevation, azimuth), trilinear resampling(scaling)
범위 : elevation(70 ~ 110) , azumith(220~320)
Projection Unit
Two layers for the network to learn projection
Projection by Reshaping (3D features → 2D features)
ex) W×H×D×C → W×H×(D·C)
Uses instance normalization & spectral normalization
Spectral Normalization(Discriminator 성능 향상을 위해 Lipschitz 상수를 제한)
Weight matrix를 Matrix의 가장 큰 e.v로 나눈다