<aside>

NCBI - WWW Error Blocked Diagnostic

adata = sc.read_h5ad('C:/Users/user/Desktop/GSE211799_adata_atlas.h5ad')

>>> print(adata.shape)
(301796, 31706) 

>>> print(adata)
AnnData object with n_obs × n_vars = 301796 × 31706
    obs: 'study_sample', 'study', 'file', 'reference', 'size_factors_sample', 'phase_cyclone', 's_cyclone', 'g2m_cyclone', 'g1_cyclone', 'sex', 'ins_score', 'ins_high', 'gcg_score', 'gcg_high', 'sst_score', 'sst_high', 'ppy_score', 'ppy_high', 'cell_filtering', 'age', 'strain', 'tissue', 'technique', 'study_sample_design', 'cell_type', 'cell_type_multiplet', 'cell_subtype', 'cell_subtype_multiplet', 'design', 'size_factors_integrated', 'pre_cell_type_unified', 'pre_cell_type_original', 'study_parsed', 'cell_type_parsed', 'low_q', 'BETA-DATA_leiden_r1.5', 'BETA-DATA_leiden_r20', 'BETA-DATA_hc_gene_programs', 'BETA-DATA_hc_gene_programs_parsed', 'BETA-DATA_leiden_r1.5_parsed', 'BETA-DATA_leiden_r1.5_parsed_const', 'CXG-DATA_n_genes', 'CXG-DATA_mt_frac', 'CXG-DATA_doublet_score', 'CXG-DATA_log10_n_counts', 'CXG-DATA_age_approxDays', 'CXG-DATA_cell_subtype_immune_reannotatedIntegrated', 'CXG-DATA_cell_subtype_endothelial_reannotatedIntegrated', 'CXG-DATA_emptyDrops_LogProb_scaled', 'CXG-DATA_diabetes_model', 'CXG-DATA_chemical_stress', 'CXG-DATA_GEO_accession', 'CXG-DATA_sex_annotation', 'cell_type_integrated_v2', 'cell_type_integrated_v2_parsed'
    var: 'gene_symbol', 'used_integration', 'gene_symbol_original_matched', 'CXG-DATA_feature_is_filtered', 'CXG-DATA_present_Fltp_2y', 'CXG-DATA_present_Fltp_adult', 'CXG-DATA_present_Fltp_P16', 'CXG-DATA_present_NOD', 'CXG-DATA_present_NOD_elimination', 'CXG-DATA_present_spikein_drug', 'CXG-DATA_present_embryo', 'CXG-DATA_present_VSG', 'CXG-DATA_present_STZ', 'gene_symbol_FINAL'
    uns: 'BETA-DATA_hc_gene_programs_parsed_colors', 'BETA-DATA_hc_gene_programs_parsed_order', 'BETA-DATA_leiden_r1.5_parsed_colors', 'BETA-DATA_leiden_r1.5_parsed_order', 'cell_type_integrated_v2_colors', 'cell_type_integrated_v2_parsed_order', 'field_descriptions', 'study_colors', 'study_order', 'study_parsed_colors', 'study_parsed_order'
    obsm: 'BETA-DATA_X_umap', 'BETA-DATA_X_umap_opt', 'X_integrated', 'X_umap'
    
>>> print(adata.obs.head())
                                                             study_sample            study        file  ...  CXG-DATA_sex_annotation  cell_type_integrated_v2 cell_type_integrated_v2_parsed
index                                                                                                   ...
CAAGATCGTCCAGTTA-1-SRR7610301-NOD_elimination  NOD_elimination_SRR7610301  NOD_elimination  SRR7610301  ...             ground-truth                   ductal                         ductal
GATGAAAGTTGTCGCG-1-SRR7610298-NOD_elimination  NOD_elimination_SRR7610298  NOD_elimination  SRR7610298  ...             ground-truth                    gamma                          gamma
AGTCTTTAGGAGCGTT-1-SRR7610301-NOD_elimination  NOD_elimination_SRR7610301  NOD_elimination  SRR7610301  ...             ground-truth              endothelial                    endothelial
CTTCCTTGTACCCAGC-1-MUC13640-VSG                              VSG_MUC13640              VSG    MUC13640  ...             ground-truth                   immune                         immune
CATCAAGAGATTACCC-1-SRR7610296-NOD_elimination  NOD_elimination_SRR7610296  NOD_elimination  SRR7610296  ...             ground-truth       stellate_quiescent                    stellate q.
[5 rows x 55 columns]

>>> print(adata.var.head())
                   gene_symbol  used_integration gene_symbol_original_matched  CXG-DATA_feature_is_filtered  ...  CXG-DATA_present_embryo  CXG-DATA_present_VSG  CXG-DATA_present_STZ  gene_symbol_FINAL
EID                                                                                                          ...
ENSMUSG00000000001       Gnai3             False                        Gnai3                         False  ...                     True                  True                  True              Gnai3 
ENSMUSG00000000003        Pbsn             False                         Pbsn                         False  ...                     True                  True                  True               Pbsn 
ENSMUSG00000000028       Cdc45             False                        Cdc45                         False  ...                     True                  True                  True              Cdc45 
ENSMUSG00000000031         H19             False                          H19                         False  ...                     True                  True                  True                H19 
ENSMUSG00000000037       Scml2             False                        Scml2                         False  ...                     True                  True                  True              Scml2 
[5 rows x 14 columns]

>>> print(adata.uns.keys())
dict_keys(['BETA-DATA_hc_gene_programs_parsed_colors', 'BETA-DATA_hc_gene_programs_parsed_order', 'BETA-DATA_leiden_r1.5_parsed_colors', 'BETA-DATA_leiden_r1.5_parsed_order', 'cell_type_integrated_v2_colors', 'cell_type_integrated_v2_parsed_order', 'field_descriptions', 'study_colors', 'study_order', 'study_parsed_colors', 'study_parsed_order'])

>>> print(adata.obsm.keys())
KeysView(AxisArrays with keys: BETA-DATA_X_umap, BETA-DATA_X_umap_opt, X_integrated, X_umap)

>>> print(adata.X[:5, :5])
<Compressed Sparse Row sparse matrix of dtype 'float64'
        with 1 stored elements and shape (5, 5)>
  Coords        Values
  (0, 0)        0.7450058814879538
  
>>> print(adata.obs.keys())
Index(['study_sample', 'study', 'file', 'reference', 'size_factors_sample',   
       'phase_cyclone', 's_cyclone', 'g2m_cyclone', 'g1_cyclone', 'sex',      
       'ins_score', 'ins_high', 'gcg_score', 'gcg_high', 'sst_score',
       'sst_high', 'ppy_score', 'ppy_high', 'cell_filtering', 'age', 'strain',
       'tissue', 'technique', 'study_sample_design', 'cell_type',
       'cell_type_multiplet', 'cell_subtype', 'cell_subtype_multiplet',       
       'design', 'size_factors_integrated', 'pre_cell_type_unified',
       'pre_cell_type_original', 'study_parsed', 'cell_type_parsed', 'low_q', 
       'BETA-DATA_leiden_r1.5', 'BETA-DATA_leiden_r20',
       'BETA-DATA_hc_gene_programs', 'BETA-DATA_hc_gene_programs_parsed',     
       'BETA-DATA_leiden_r1.5_parsed', 'BETA-DATA_leiden_r1.5_parsed_const',  
       'CXG-DATA_n_genes', 'CXG-DATA_mt_frac', 'CXG-DATA_doublet_score',      
       'CXG-DATA_log10_n_counts', 'CXG-DATA_age_approxDays',
       'CXG-DATA_cell_subtype_immune_reannotatedIntegrated',
       'CXG-DATA_cell_subtype_endothelial_reannotatedIntegrated',
       'CXG-DATA_emptyDrops_LogProb_scaled', 'CXG-DATA_diabetes_model',
       'CXG-DATA_chemical_stress', 'CXG-DATA_GEO_accession',
       'CXG-DATA_sex_annotation', 'cell_type_integrated_v2',
       'cell_type_integrated_v2_parsed'],
      dtype='object')   
      
>>> print(adata.obs.cell_type_integrated_v2_parsed.keys())
Index(['CAAGATCGTCCAGTTA-1-SRR7610301-NOD_elimination',
       'GATGAAAGTTGTCGCG-1-SRR7610298-NOD_elimination',
       'AGTCTTTAGGAGCGTT-1-SRR7610301-NOD_elimination',
       'CTTCCTTGTACCCAGC-1-MUC13640-VSG',
       'CATCAAGAGATTACCC-1-SRR7610296-NOD_elimination',
       'CAGAGAGCAACGATGG-1-G2-STZ', 'GTGCTTCCATTGCCTC-1-MUC13631-VSG',
       'ATAGGCTCATGCAGCC-1-MUC13639-VSG', 'CCCTCCTCAGCGTCCA-1-G5-STZ',
       'TACCTGCAGGAAAGGT-1-MUC13640-VSG',
       ...
       'ATGAGGGCATTCCTCG-1-MUC13632-VSG',
       'ACGCCGACACACATGT-1-mouse2-Fltp_adult',
       'CACCAGGTCGAGGTAG-1-SRR7610302-NOD_elimination',
       'TGCACCTCAGATCTGT-1-E15_5-embryo', 'TAAACCGAGACGACGT-1-G8-STZ',
       'GACTAACGTGAGGCTA-1-SRR10751514-spikein_drug',
       'CAGCAGCGTGTGCGTC-1-E14_5-embryo',
       'TCGAGGCGTTGGTTTG-1-mouse2-Fltp_adult',
       'CTCATTAGTAGGGTAC-1-SRR10751508-spikein_drug',
       'CTTGGCTAGACAGACC-1-SRR7610302-NOD_elimination'],
      dtype='object', name='index', length=301796)
      
>>> print(adata.obs['cell_type_integrated_v2_parsed'].unique())
['ductal', 'gamma', 'endothelial', 'immune', 'stellate q.', ..., 'alpha+beta', 'beta+gamma', 'delta+gamma', 'acinar', 'schwann']
Length: 20
Categories (20, object): ['E endo.' < 'E non-endo.' < 'alpha' < 'beta' ... 'beta+delta' <
                          'beta+gamma' < 'delta+gamma' < 'lowQ']