Dynamic Programming Pattern Guide for LeetCode
More DP
How To DP
1. Core DP Templates
Template 1: 1D Dynamic Programming
def one_dimensional_dp(n: int) -> int:
# 1. Initialize DP array
dp = [0] * (n + 1)
# 2. Base cases
dp[0] = base_case_0
dp[1] = base_case_1
# 3. State transition
for i in range(2, n + 1):
dp[i] = some_function(dp[i-1], dp[i-2])
return dp[n]
Template 2: 2D Dynamic Programming
def two_dimensional_dp(m: int, n: int) -> int:
# 1. Initialize 2D DP array
dp = [[0] * (n + 1) for _ in range(m + 1)]
# 2. Base cases
dp[0][0] = base_case
# 3. State transition
for i in range(m + 1):
for j in range(n + 1):
dp[i][j] = some_function(dp[i-1][j], dp[i][j-1])
return dp[m][n]
Template 3: State Compression (Space Optimization)
def space_optimized_dp(n: int) -> int:
# Instead of full array, keep only needed states
prev2, prev1 = base_case_0, base_case_1
for i in range(2, n + 1):
current = some_function(prev1, prev2)
prev2, prev1 = prev1, current
return prev1
2. LeetCode Problem Categories
Category 1: Linear Sequence DP
- LeetCode 70: Climbing Stairs
def climbStairs(n: int) -> int:
if n <= 2:
return n
prev2, prev1 = 1, 2
for i in range(3, n + 1):
current = prev1 + prev2
prev2, prev1 = prev1, current
return prev1
- LeetCode 198: House Robber
def rob(nums: List[int]) -> int:
if not nums:
return 0
if len(nums) <= 2:
return max(nums)
dp = [0] * len(nums)
dp[0] = nums[0]
dp[1] = max(nums[0], nums[1])
for i in range(2, len(nums)):
dp[i] = max(dp[i-1], dp[i-2] + nums[i])
return dp[-1]
- LeetCode 300: Longest Increasing Subsequence
Category 2: Matrix Path DP
- LeetCode 64: Minimum Path Sum