不要将数据储存在容器中,这也是 Docker 官方容器使用技巧中的一条。容器随时可以停止、或者删除。当容器被rm掉,容器里的数据将会丢失。为了避免数据丢失,用户可以使用数据卷挂载来存储数据。但是容器的 Volumes 设计是围绕 Union FS 镜像层提供持久存储,数据安全缺乏保证。如果容器突然崩溃,数据库未正常关闭,可能会损坏数据。另外,容器里共享数据卷组,对物理机硬件损伤也比较大。
即使你要把 Docker 数据放在主机来存储 ,它依然不能保证不丢数据。Docker volumes 的设计围绕 Union FS 镜像层提供持久存储,但它仍然缺乏保证。
使用当前的存储驱动程序,Docker 仍然存在不可靠的风险。如果容器崩溃并数据库未正确关闭,则可能会损坏数据。
大家都知道,MySQL 属于关系型数据库,对IO要求较高。当一台物理机跑多个时,IO就会累加,导致IO瓶颈,大大降低 MySQL 的读写性能。
在一次Docker应用的十大难点专场上,某国有银行的一位架构师也曾提出过:“数据库的性能瓶颈一般出现在IO上面,如果按 Docker 的思路,那么多个docker最终IO请求又会出现在存储上面。现在互联网的数据库多是share nothing的架构,可能这也是不考虑迁移到 Docker 的一个因素吧”。
针对性能问题有些同学可能也有相对应的方案来解决:
(1)数据库程序与数据分离
如果使用Docker 跑 MySQL,数据库程序与数据需要进行分离,将数据存放到共享存储,程序放到容器里。如果容器有异常或 MySQL 服务异常,自动启动一个全新的容器。另外,建议不要把数据存放到宿主机里,宿主机和容器共享卷组,对宿主机损坏的影响比较大。
(2)跑轻量级或分布式数据库
Docker 里部署轻量级或分布式数据库,Docker 本身就推荐服务挂掉,自动启动新容器,而不是继续重启容器服务。
(3)合理布局应用
对于IO要求比较高的应用或者服务,将数据库部署在物理机或者KVM中比较合适。目前TX云的TDSQL和阿里的Oceanbase都是直接部署在物理机器,而非Docker 。
要理解 Docker 网络,您必须对网络虚拟化有深入的了解。也必须准备应付好意外情况。你可能需要在没有支持或没有额外工具的情况下,进行 bug 修复。
我们知道:数据库需要专用的和持久的吞吐量,以实现更高的负载。我们还知道容器是虚拟机管理程序和主机虚拟机背后的一个隔离层。然而网络对于数据库复制是至关重要的,其中需要主从数据库间 24/7 的稳定连接。未解决的 Docker 网络问题在1.9版本依然没有得到解决。
把这些问题放在一起,容器化使数据库容器很难管理。我知道你是一个顶级的工程师,什么问题都可以得到解决。但是,你需要花多少时间解决 Docker 网络问题?将数据库放在专用环境不会更好吗?节省时间来专注于真正重要的业务目标。