논문 제목: “Cafe-MPC: A Cascaded-Fidelity Model Predictive Control Framework with Tuning-Free Whole-Body Control “
저자: He Li and Patrick M. Wensing
<Purpose & Process>
- Dynamics
- 근거리: Whole body dynamics
- 원거리: Single Rigid Body
- Multiple-Shooting iLQR →“A unified perspective on multiple shooting in differential dynamic programming” 이전 논문에서 연구한 내용.
- “A unified perspective on multiple shooting in differential dynamic programming”
- 초기 추정값에 덜 민감하고 더 안정적인 수렴
- Optimal Control Problem을 이산화.
- 각 shooting state을 decision variable로 설정
- 각 segment에 독립적으로 dynamics integrate
- forward rollout → trajectory update
- backward pass → local policy
- VWBC(Value function based whole body control)
- cafe-mpc의 결과로 얻은 action-value function을 사용해서 tuningX
- Hard Constraint
- Online, 33~50Hz, 5.3ms average computation time
<Overall framework>

<adaptable features>
- dynamics
- 나도 가까운곳은 whole body → SRB? ⇒ Rather makes model accuracy low?
- VWBC? → HARD constraint, PD tuning X
<guessing disadvantage(my personal opinion)>
- self collision
- computation efficiency → real time iteration
- footstep planning
<similar paper(may help double check or understand)>