<aside> ๐ฅ
Huggingface์์ ์ ๊ณตํ๋ AI Agents์ ๋ํ open source ๊ฐ์๋ฅผ ๊ณต๋ถํ ๊ธฐ๋ก์ ์์๋ด ๋๋ค.
</aside>
ํ๊น ํ์ด์ค์์ ์ ๊ณตํ๋ ๋ฌด๋ฃ ๊ฐ์์ธ Agents Course๋ฅผ ์๊ฐํ๊ณ ์์ต๋๋ค. ์ด๋ฒ ๊ฐ์๋ฅผ ๋ค์ผ๋ฉด ํ๊น ํ์ด์ค์์๋ ์๋์ ๊ฐ์ ๊ฒ์ ์ป์ ์ ์๋ค๊ณ ํฉ๋๋ค.
์ ๋ Agent๋ฅผ ์ด์ฉํ ์๋น์ค๋ฅผ ๋ง๋๋ ๊ฒ์ ๋จ๊ธฐ ๋ชฉํ๊ฐ ์๊ธฐ ๋๋ฌธ์ ์ด๋ฒ ๊ฐ์๋ฅผ ์๊ฐํ๋ฉด์ ์ ๊ฐ ์ํ๋ Agent ์๋น์ค์ ํ๊ฑธ์ ๋ค๊ฐ๊ฐ ์ ์๋ค๊ณ ์๊ฐํฉ๋๋ค.
์ ์ฒด์ ์ธ Chapter๋ ๋ค์๊ณผ ๊ฐ์ต๋๋ค.
Chapter | Topic | Description |
---|---|---|
0 | Onboarding | Set you up with the tools and platforms that you will use. |
1 | Agent Fundamentals | Explain Tools, Thoughts, Actions, Observations, and their formats. Explain LLMs, messages, special tokens and chat templates. Show a simple use case using python functions as tools. |
1.5 | Bonus : Fine-tuning an LLM for function calling | Letโs use LoRa and fine-tune a model to perform function calling inside a notebook. |
2 | Frameworks | Understand how the fundamentals are implemented in popular libraries : smolagents, LangGraph, LLamaIndex |
3 | Use Cases | Letโs build some real life use cases (open to PRs ๐ค from experienced Agent builders) |
4 | Final Assignment | Build an agent for a selected benchmark and prove your understanding of Agents on the student leaderboard ๐ |
๊ทธ๋ฌ๋ฉด ์ข๋ ์์ธํ ๋ค์ด๊ฐ๋ณด๋๋ก ํ์ฃ !
<aside>
1.4. Messages and Special Tokens
1.6. Understanding AI Agents through the Thought-Action-Observation Cycle
1.7. Thought, Internal Reasoning and the Re-Act Approach
1.8. Actions: Enabling the Agent to Engage with Its Environment
1.9. Observe: Integrating Feedback to Reflect and Adapt
</aside>