结构

堆排序

应用

优先队列

  1. 合并有序小文件

    假设我们有 100 个小文件,每个文件的大小是 100MB,每个文件中存储的都是有序的字符串。我们希望将这些 100 个小文件合并成一个有序的大文件。这里就可以用到优先级队列。

    依次从 100 个小文件中取出第一个元素,构造成一个优先队列,取最小的元素放入合并之后的文件中,从队列中移除并取对应小文件的下一个,这样依次进行即可。

    这样就无需像数组一样遍历整个数组,时间复杂度为 O(logn)。

  2. 高性能定时器

    按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。

    这样,定时器就不需要每隔 1 秒就扫描一遍任务列表了。它拿队首任务的执行时间点,与当前时间点相减,得到一个时间间隔 T。这个时间间隔 T 就是,从当前时间开始,需要等待多久,才会有第一个任务需要被执行。

    这样,定时器就可以设定在 T 秒之后,再来执行任务。从当前时间点到(T-1)秒这段时间里,定时器都不需要做任何事情。当 T 秒时间过去之后,定时器取优先级队列中队首的任务执行。然后再计算新的队首任务的执行时间点与当前时间点的差值,把这个值作为定时器执行下一个任务需要等待的时间。

    通过这种做法,定时器既不用间隔 1 秒就轮询一次,也不用遍历整个任务列表,性能也就提高了。

利用堆求 Top K 问题

  1. 针对静态数据

    可以维护一个大小为 K 的小顶堆,顺序遍历数组,从数组中取出数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前 K 大数据了。

    遍历数组需要 O(n) 的时间复杂度,一次堆化操作需要 O(logK) 的时间复杂度,所以最坏情况下,n 个元素都入堆一次,时间复杂度就是 O(nlogK)。

  2. 针对动态数据

    一直都维护一个 K 大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。

    这样,无论任何时候需要查询当前的前 K 大数据,我们都可以立刻返回给他。

利用堆求动态数据中的中位数

我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。

也就是说,如果有 n 个数据,n 是偶数,我们从小到大排序,那前 2n 个数据存储在大顶堆中,后 2n 个数据存储在小顶堆中。这样,大顶堆中的堆顶元素就是我们要找的中位数。如果 n 是奇数,情况是类似的,大顶堆就存储 n / 2 + 1 个数据,小顶堆中就存储 n / 2 个数据。

如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则,我们就将这个新数据插入到小顶堆。

这个时候就有可能出现,两个堆中的数据个数不符合前面约定的情况:如果 n 是偶数,两个堆中的数据个数都是 n / 2;如果 n 是奇数,大顶堆有 n / 2 + 1 个数据,小顶堆有 n / 2 个数据。这个时候,我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。

<aside> 💡 通过这种方式扩展,可以快速求其他百分位的数据

</aside>