Basic concept
Probability Space
- Sample space(표본공간) $\Omega$: a (fixed) set of all possible outcomes
- event(사건) $\mathcal F$: A set of events
- probability measure $\mathbb P:\mathcal F \rightarrow[0,1]$
<aside>
📐 공리
$\{A_i\}\subseteq\mathcal F$에 대해
- $0 \le P(A_i)\le1$
- $\mathbb P(\Omega)=1$
- $if\ i\ne j\ and\ A_i\cap A_j=\emptyset,\ \mathbb P(\cup_iA_i)=\sum_i\mathbb P(A_i)$
</aside>
$(\Omega, \mathcal F, \mathbb P)$를 probability space라 한다.
Basic properties of probability
$A$를 사건이라 하자.
- $\mathbb P(A^c) = 1-\mathbb P(A)$
- If $B$가 사건이고$B\subseteq A,\ \mathbb P(B)\le \mathbb P(A)$
- $0=\mathbb P(\emptyset)\le\mathbb P(A)\le\mathbb P(\Omega)=1$
Other concepts
Boole’s inequality (Union bound)
$$
⁍
$$
Conditional probability
$$
\mathbb P(A|B)={\mathbb P(A\cap B)\over \mathbb P(B)}
$$
Bayes’ rule
$$
\mathbb P(A|B)={\mathbb P(B|A)\mathbb P(A)\over\mathbb P(B)}\\
posterior={likelihood\times prior\over evidence}
$$