FAQs and details

https://github.com/ShaliniAnandaPhD/PRISM

System Overview

pRISM is a cutting-edge repository designed to address the complexities of multimodal legal data analysis. By leveraging advanced AI techniques like Retrieval-Augmented Generation (RAG), pRISM integrates multiple language models (OpenAI GPT, Claude 3.5, and Mistral) and employs tools such as FAISS, LangChain, and LoRA fine-tuning. The system provides actionable insights in high-stakes legal domains, particularly in cases involving RICO violations, by mapping threat patterns, validating evidence chains, and aligning evidence to constitutional frameworks.

Note: This repository is for research and demonstration purposes only. No real-world or proprietary data is included.


%%{init: {'theme': 'base', 'themeVariables': { 'fontSize': '20px', 'fontFamily': 'arial', 'primaryColor': '#4a90e2', 'primaryTextColor': '#fff', 'primaryBorderColor': '#3375b9', 'lineColor': '#666', 'secondaryColor': '#6cc04a', 'tertiaryColor': '#e57810'}}}%%

flowchart TB
    %% Client and API Layer
    Client["๐Ÿ–ฅ๏ธ Client Applications"]:::client --> API["๐ŸŒ API Gateway"]:::gateway
    API --> Auth["๐Ÿ” Authentication"]:::auth
    
    subgraph Core["๐Ÿš€ Core System"]
        direction TB
        Auth --> DocProcessor["๐Ÿ“„ Document Processor"]:::processor
        Auth --> QueryHandler["๐Ÿ” Query Handler"]:::handler
        
        DocProcessor --> Storage[("๐Ÿ’พ Document Storage")]:::storage
        DocProcessor --> Indexer["๐Ÿ“‘ FAISS Indexer"]:::indexer
        
        Indexer --> VectorDB[("๐Ÿ”ฎ Vector Database")]:::vectordb
        
        QueryHandler --> ModelHub["๐Ÿง  Model Integration Hub"]:::modelhub
        QueryHandler --> VectorDB
        
        ModelHub --> GPT["๐Ÿค– OpenAI GPT"]:::model1
        ModelHub --> Claude["๐Ÿค– Claude 3.5"]:::model2
        ModelHub --> Mistral["๐Ÿค– Mistral"]:::model3
        ModelHub --> Consensus["โš–๏ธ Consensus Engine"]:::consensus
    end
    
    Consensus --> OutputFormatter["๐Ÿ“Š Output Formatter"]:::output
    OutputFormatter --> API

    %% Style definitions
    classDef client fill:#4a90e2,stroke:#3375b9,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef gateway fill:#6cc04a,stroke:#51a035,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef auth fill:#e57810,stroke:#c66a0e,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef processor fill:#9b59b6,stroke:#8e44ad,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef handler fill:#3498db,stroke:#2980b9,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef storage fill:#e74c3c,stroke:#c0392b,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef indexer fill:#f1c40f,stroke:#f39c12,stroke-width:4px,color:black,font-size:24px,font-weight:bold
    classDef vectordb fill:#1abc9c,stroke:#16a085,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef modelhub fill:#8e44ad,stroke:#6c3483,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef model1 fill:#2ecc71,stroke:#27ae60,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef model2 fill:#e67e22,stroke:#d35400,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef model3 fill:#3498db,stroke:#2980b9,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef consensus fill:#9b59b6,stroke:#8e44ad,stroke-width:4px,color:white,font-size:24px,font-weight:bold
    classDef output fill:#16a085,stroke:#0e6655,stroke-width:4px,color:white,font-size:24px,font-weight:bold

    %% Subgraph styles
    style Core fill:#f8f9fa,stroke:#dee2e6,stroke-width:4px,color:#333,font-weight:bold

Core Components

1. Multi-Model Integration Hub

2. RAG Pipeline

3. LoRA Fine-Tuning Framework


%%{init: {'theme': 'base', 'themeVariables': { 'fontSize': '16px', 'fontFamily': 'arial', 'primaryColor': '#4a90e2', 'primaryTextColor': '#fff', 'primaryBorderColor': '#3375b9', 'lineColor': '#555', 'secondaryColor': '#6cc04a', 'tertiaryColor': '#e57810'}}}%%

flowchart LR
    %% Input and Pre-processing
    Input[("Input Documents")]:::input --> PreProcess["Pre-processor"]:::preprocess
    
    %% Document Processing subgraph
    subgraph Processing["๐Ÿ”„ Document Processing"]
        direction TB
        PreProcess --> TextExtract["Text Extraction"]:::extract
        PreProcess --> OCR["OCR Processing"]:::extract
        PreProcess --> AudioTrans["Audio Transcription"]:::extract
        
        TextExtract --> Clean["Text Cleaning"]:::clean
        OCR --> Clean
        AudioTrans --> Clean
        
        Clean --> Chunk["Text Chunking"]:::process
        Chunk --> Embed["Embeddings Generation"]:::process
    end
    
    %% Storage and Enrichment
    Embed --> Store[("FAISS Storage")]:::storage
    
    subgraph Enrichment["โšก Data Enrichment"]
        direction TB
        Store --> EntityExtract["Entity Extraction"]:::enrich
        Store --> PatternDetect["Pattern Detection"]:::enrich
        Store --> RelationMap["Relationship Mapping"]:::enrich
    end
    
    EntityExtract --> Index[("Enriched Index")]:::output
    PatternDetect --> Index
    RelationMap --> Index

    %% Style definitions
    classDef input fill:#4a90e2,stroke:#3375b9,stroke-width:2px,color:white,font-weight:bold
    classDef preprocess fill:#6cc04a,stroke:#51a035,stroke-width:2px,color:white,font-weight:bold
    classDef extract fill:#e57810,stroke:#c66a0e,stroke-width:2px,color:white,font-weight:bold
    classDef clean fill:#9b59b6,stroke:#8e44ad,stroke-width:2px,color:white,font-weight:bold
    classDef process fill:#3498db,stroke:#2980b9,stroke-width:2px,color:white,font-weight:bold
    classDef storage fill:#e74c3c,stroke:#c0392b,stroke-width:2px,color:white,font-weight:bold
    classDef enrich fill:#f1c40f,stroke:#f39c12,stroke-width:2px,color:black,font-weight:bold
    classDef output fill:#1abc9c,stroke:#16a085,stroke-width:2px,color:white,font-weight:bold
    
    %% Subgraph styles
    style Processing fill:#f5f5f5,stroke:#dcdcdc,stroke-width:2px,color:#333,font-weight:bold
    style Enrichment fill:#f5f5f5,stroke:#dcdcdc,stroke-width:2px,color:#333,font-weight:bold

Revolutionizing Legal Analytics with Advanced AI

Legal cases, particularly those involving RICO violations, often present an overwhelming array of multimodal dataโ€”financial transactions, communication logs, legal filings, and multimedia evidence. Analyzing this data manually is time-consuming and error-prone. Moreover, existing AI tools, while powerful, fall short of addressing the complexity of such cases.